ANALYSIS OF SOLUTIONS OF TIME FRACTIONAL TELEGRAPH EQUATION
نویسندگان
چکیده
منابع مشابه
Fractional Difference Approximations for Time-Fractional Telegraph Equation
In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
متن کاملNumerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices
Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...
متن کاملAnalytical Solution for the Time-Fractional Telegraph Equation
We discuss and derive the analytical solution for three basic problems of the so-called timefractional telegraph equation. The Cauchy and Signaling problems are solved by means of juxtaposition of transforms of the Laplace and Fourier transforms in variable t and x, respectively. the appropriate structures and negative prosperities for their Green functions are provided. The boundary problem in...
متن کاملAnalytical solution for a generalized space-time fractional telegraph equation
In this paper, we consider a nonhomogeneous space-time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the firstor second-order time derivative by the Caputo fractional derivative Dt , α > 0; and the Laplacian operator by the fractional Laplacian (−∆) , β ∈ (0, 2]. We discuss and derive the analytical solutions...
متن کاملNumerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation
We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Society for Industrial and Applied Mathematics
سال: 2014
ISSN: 1226-9433
DOI: 10.12941/jksiam.2014.18.209